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Abstract

We consider regularized least-squares (RLS) with a Gaussian kernel. We
prove that if we let the Gaussian bandwidth— oo while letting the
regularization parameter — 0, the RLS solution tends to a polynomial
whose order is controlled by the relative rates of deca)}zohnd A if

A = o~ kD then, agr — oo, the RLS solution tends to theh order
polynomial with minimal empirical error. We illustrate the result with an
example.

1 Introduction

Given a data sefz1,y1), (z2,y2), - - -, (Zn, yn), the inductive learning task is to build a
function f(x) that, given a new: point, can predict the associatgd/alue. We study the

Regularized Least-Squares (RLS) algorithm for findjygp common and popular algo-
rithm [2, 4] that can be used for either regression or classification:

min — Y (f(2:) —v:)* + M| flI%-
Here,H is a Reproducing Kernel Hilbert Space (RKHS) [1] with associated kernel function
K, ||f||% is the squared norm in the RKHS, ands a regularization constant controlling
the tradeoff between fitting the training set accurately and forcing smoothn¢ss of

° This report describes research done at the Center for Biological & Computational Learning, which
is in the McGovern Institute for Brain Research at MIT, as well as in the Dept. of Brain & Cognitive
Sciences, and which is affiliated with the Computer Sciences & Artificial Intelligence Laboratory
(CSAIL).

This research was sponsored by grants from Office of Naval Research (DARPA) Contract No.
MDA972-04-1-0037, Office of Naval Research (DARPA) Contract No. NO0014-02-1-0915, Na-
tional Science Foundation-NIH (CRCNS) Contract No. EIA-0218506, and National Institutes of
Health (Conte) Contract No. 1 P20 MH66239-01A1.

Additional support was provided by Central Research Institute of Electric Power Industry
(CRIEPI), Daimler-Chrysler AG, Eastman Kodak Company, Honda Research Institute USA, Inc.,
Komatsu Ltd., Merrill-Lynch, NEC Fund, Oxygen, Siemens Corporate Research, Inc., Sony, Sum-
itomo Metal Industries, and the Eugene McDermott Foundation.



RLSC Results for GALAXY Dataset
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Fig. 1. RLS classification accuracy results for the UCI Galaxy dataset over a rangéatdng the
z-axis) and\ (different lines) values. The vertical labelled lines shawthe smallest entry in the
kernel matrix for a giverr. We see that wheih = le — 11, we can classify quite accurately when
the smallest entry of the kernel matrix is .99999.

The Representer Theorem [6] proves that the RLS solution will have the form
n
f(l‘) = Z CiK(xiv 'T)’
1=1

and it is easy to show [4] that we can find the coefficierity solving the linear system
(K + Anl)c =y, Q)

whereK is then by n matrix satisfyingk;; = K (z;, z;).

We focus on the Gaussian kerdé€lz;, z;) = exp(—||z; — z;|?/20?).

Our work was originally motivated by the empirical observation that on a range of bench-
mark classification tasks, we achieved surprisingly accurate classification using a Gaussian
kernel with a very larger and a very smalh (Figure 1; additional examples in [5]). This
prompted us to study the largeasymptotics of RLS. A% — oo, K(z;,z;) — 1 for
arbitraryz; andx;. Consider a single test poin. RLS will first find c using Equation 1,
then compute

f(zo) = c'k

wherek is the kernel vecto; = K (x;, xo). Combining the training and testing steps, we
see that
f(zo) = y' (K + A nI) "k

Both K andk are close td for largeo, i.e. K;; = 1 + ¢;; andk; = 1 + ;. If we directly
computec = (K + AnI)~'y, we will tend to wash out the effects of the term aso



becomes large. If, instead, we compyte:) by associating to the right, first computing
point affinities( K + AnI)~'k, then thee;; ande; interact meaningfully; this interaction is
crucial to our analysis.

Our approach is to Taylor expand the kernel elements (andRhasdk) in 1/0, noting

that ass — oo, consecutive terms in the expansion differ enormously. In compfihg
AnI)~1k, these scalings cancel each other out, and result in finite point affinities even as
o — oo. The asymptotic affinity formula can then be “transposed” to create an alternate
expression forf (). Our main result is that if we set? = s and\ = s~ (251 then, as

s — 00, the RLS solution tends to thigh order polynomial with minimal empirical error.

We note in passing that our work is somewhat in the same vein as the elegant recent work
of Keerthi and Lin [3]; they consider Support Vector Machines rather than RLS, and derive
only the linear (first order) result.

2 Notation and definitions

Definition 1. Letx; be a set ofr 4+ 1 points 0 < i < n) in a d dimensional space. The
scalarz;, denotes the value of thé" vector component of th&" point.

Then x d matrix, X is given byX;, = z;,.

We think of X as the matrix of training datay, . . . , x,, andzq as anl x d matrix consisting
of the test point.

Let 1,,, 1;, denote then dimensional vector anél x m matrix with components all,
similarly for 0,,, 0;,,,. We will dispense with such subscripts when the dimensions are clear
from context.

Definition 2 (Hadamard products and powers).For twol x m matrices,N, M, N ® M
denotes thé x m matrix given by N © M);; = N;; M;;. Analogously, we sétV®<),. =
NE.

()

Definition 3 (polynomials in the data).Let I < Z%O (non-negative multi-indices) and
Y be ak x d matrix. Y'! is the k dimensional vector given by ’), = []¢_, V. If

h: R? — R thenh(Y) is thek dimensional vector given by (Y)), = h(Yi1, - . ., Yiq).

Thed canonical vectorsg, € Z‘éo, are given by(e, )y = dup-

For example X*¢ is the a” column of X raised, elementwise, to thé" power and,
similarly, 2% = 2. The degree of the multi-indekis || = Zizl I,. The vectorh(Y)
whereh(y) = S2%_, 2 is referred to a§|Y||2.

In constrast, any scalar functiofi; R — R, applied to any matrix or vectod, will be as-

sumed to denote the elementwise applicatiofi.afVe will treaty — e¥ as a scalar function
(we have no need of matrix exponentials in this work, so the notation is unambiguous).

We can re-express the kernel matrix and kernel vector in this notation:

1 d €a eq\t 2eq 1t 2eq \t
K = 307 2a=1 2X70 (X)) =X 1% 1, (X2¢0) @
i = LXIPY XX s — X2
:dlag(e 5z lIXI2) 22 XX giag (¢~ 221Xl 3)
k= o307 Dam 2XCowgt — X0l —Tagc (4)

. __1_ 2 1 t 1 2
:dlag(e sz lIX1] )eﬁzmoe Sz llwol2 5)



3 Orthogonal polynomial bases

LetV. = spaf{ X’ : |I| = ¢} andV<. = |J;_, V= Which can be thought of as the set of all
d variable polynomials of degree evaluated on the training data. Since the data are finite,
there existd such that'’<. = V;, for all ¢ > b. Generically is the smallest such that

c+d
e

Let @ be an orthonormal matrix itR"*"™ whose columns progressively span the.

spaces, i.eQ) = (By Bi --- B,)whereQ'Q =TI andcolspafi( By --- B.)} =
V<.. We might imagine building such@ via the Gramm-Schmidt process on the vectors
X0 Xxer ... Xea .. XTI ... taken in order of non-decreasing.

]
I... 1,
Q, X, andx are easily proved.

Letting C; = be multinomial coefficients, the following relations between

(Xz)® Z CrX'(z})" hence (Xa()®° € Ve
[I|=c

(XXH% = 3~ ¢ X!(x")" hence colspaf(X X*)*} = V.
[I|=c

and thus,B(Xz4)® = 0if i > ¢, B{(XX")9°B; = 01if i > corj > ¢ and
BY(X X*)©¢B, is non-singular.

Finally, we note that argmin,_ {lly — v[[} = X_ o(By).

a<c

4 Taking the ¢ — oo limit

We will begin with a few simple lemmas about the limiting solutions of linear systems.
At the end of this section we will arrive at the limiting form of suitably modified RLSC
equations.

Lemma 1. Let A(s) be a continuous matrix-valued function definedox s < s, for
somesy € R. If lim, .o A(s) = Ay and 4 is non-singular, thedim, .o A(s)~! = Agl.

Proof. Givene, selects < s, such that|l — A(s) Ay |2 < min{2, 2HA || }for s<9d

(such & exists sincaim,_.o A(s) = Ag). Note thatl|] — A(s) Ay '||2 < 3, implies A(s)
is non-singular. Then

As)Th = AgT I = (I = A(s)Ag 1) ™! = Ap (I+ Z(I - A(S)Aol)i)
11 = A(s)Ag [l

Agt —A(s) M2 < (145"
45" = Al < 145 Nl e

< €.

O

Corollary 1. Let A(s), y(s) be continuous matrix-valued and vector-valued functions, de-
fined for0 < s < so for somesy € R with lim,_g A(s) = Ap is non-singular.

lim, o y(s) = yo iff lim,_g A(s) " ty(s) = Ao_lyo.



Proof. By lemma 1]im, .o A(s) "' = A;".
By the continuity of matrix multiplication

lim B(s)z(s) = (il_r% B(s)) (lim az(s))

5—0 s—0
(the existence of the right hand limits implying the existence of the left hand limit).
If lim,_oy(s) = yo then letB(s) = A~1(s) andz(s) = y(z).
If lim,_ A(s)"ty(s) = xo then letz(s) = A(s)"'y(s) and B(s) = A(s), and thus
yo = limg o A(s)(A(s)1y(s)) = Agzo. 0

Lemma 2. Let A(s), y(s) be matrix-valued and vector-valued polynomials of degraerd
B(s), z(s) be matrix-valued and vector-valued functions that are bounded in the region
0 < s < sg, for somesy € R. If A(s) is non-singular fol) < s < sg, then

lim (A(s) + s B(s)) ™ (y(s) + 5 2(5)) = lim A(s) " y(s).

Proof. We first note that fos > 0,
(A(s) + Sp+1B(S))71 =T+ serlA(:s)flB(s))flA(s)f1

SinceA(s) is a polynomial, the entries of(s)~! are rational functions with denominators
of degreep. Thus,lim,_o sP*1A~1(s) = 0, and thus, by the boundednessm®fs) and

z(s),
sPTLATY(s)z(s) — 0
sPTL AT (5)B(s) —
By Lemma 1Jim;_o( + s?T1A~1(s)B(s)) = I. Thus, by Corollary 1,
lim (A(s) + 5" B(5)) ™ (y(s) + 5" 2(s))
= lim (I + s A() " B(5)) 7 As) 7 (y(s) + 57 2(s))
= lim A(s) "' (y(s) + s"712(s))

s—0

= lim A(s) y(s).

s—0

a

Lemma 3. Leti; < --- < i, be positive integers. Led(s), y(s) be a block matrix and
block vector given by

Aoo(s) i1A01(8) S‘QAOq(S) Zbo( s)
As) = Alo( ) An(s) o “Alq(s) y(s) = bl( )
S"AqO( ) Squl( ) e Squq( ) siab ( )

whereA,;; (s) andb;(s) are continuous matrix-valued and vector-valued functionswith
A4;(0) non-singular for alli.

Ap®©) 0 -0\ ' /bo(0)
fim A~ epyte) = | ol A 8 O
AqO (0) Aql(o) T Aqq(o) bq(o)



Proof. Let P(s) = diag(I,s~1,...,s %) with the blocks ofP(s) commensurate with
those ofA(s).

Aoo(s) st Agi(s) - ‘s"q‘Aoq(s)
P(s)AGs) = | Ao Anle) s Al
Ag(s)  Aql(s) T Agq(s)
and
A0 0 - 0 \ !
liy P(s)A(s) = | 0@ AnO) 0
AqO(O) Aql(O) Aqq(o)
which is invertible.
bo(s)
Noting thatlim,_.o P(s)y(s) = bl(s) , we see that our result follows from corollary 1
by(s)
applied tolim, _.o(P(s)A(s)) "L (P(s)y(s)). ]

We are now ready to state and prove the main result of this section, characterizing the
limiting largeo solution of Gaussian RLS.

Theorem 1. Letq be an integer satisfying < b, and letp = 2¢ + 1. Let\ = Co~? for
some constant. DefineAZ(.j.) = IBI(XX")®°B;, andb\” = LB (Xah)™°.

lim (K +nCo 1) k=

where
v=(By -+ Bg)w (6)
by AD 0 0
oV [ = [ A Al 0y Y
bSﬁ) A(%) Afﬁ) . AS;Z}

We first manipulate the equatidik’ + nAI)y = k according to the factorizations in (3)
and (5). Defining

2 _1_ 2
XIP = g lleoll®,

N = diage_za%‘
Pzt w= e, g=nco,
(where we omit for brevity the dependencies«grwe have
K = diag (e 7 IX17) 35X diag (e 27X} = NPN

. __1_ 2 1 to__1_ 2
k = diag (¢35 X117 ez Xebe ool = Nua

Noting that

lim eiﬁ”r"uzdiag(eﬁllxw) = lim aN7!' =1,

o — 00 g —00



we have
v= lim (K +nCo PI)" 'k

g —00

lim (NPN + BI) "' Nwa
o —00
= lim aN"Y(P+ BN~ w

= lim aN"Y(P+ 3N tw
o— 00
— lim (eﬁXXt+nCU_pdiag<€<%2HXH2>)71 oo Xl

Changing bases witt),

Qtv = lim (Qteo%XXtQ 4 nCU_thdiag (eo%\\XHQ) Q)il Qte;—szg.

g—00

Expanding via Taylor series and writing in block form (in the b block structure of)),

Qe Q= QUXXY)Q + 5@ (XX)Q + 5 QXX Q4+

102 2o
A9 o 0 Ay Ay -0
[ o o - 0 +i2 AR AL o |4
o

T 1 1
Qerr ™ = Q'(Xxp)™ + Q" (Xap)?" + 5 Q" (Xab) ™ + -
§) 0 (4

0 + — bl

. g e

0 0

—pOtdi SIX1? _ —p

nCo Qd|ag(eo )Q—nCJ I+4---.

Since theAgi) are non-singular, Lemma 3 applies, giving our result. O

5 The classification function

When performing RLS, the actual prediction of the limiting classifier is given via

foo(20) = lim y'(K +nCo PI) k.

Theorem 1 determines

v = lim (K +nCo PI)" 'k,

g —00

showing thatf.(zo) is a polynomial in the training datX. In this section, we show
that fo. (o) Is, in fact, a polynomial in the test poing. We continue to work with the

orthonormal vectors3; as well as the auxilliary quantiti%gj) andbgc) from Theorem 1.



Theorem 1 shows that € V<,: the point affinity function is a polynomial of degreen
the training data, determined by (7).
3" dB A Bl = (XX hence Y clB.AYB! = B.BL(X X"
1,j<c j<c
S edBb(? = (Xah)®c  hence cB.b\” = B.BY(Xaxh)**
i<c

we can restate Equation 7 in an equivalent form:

B\ 01 O!A(()(lé) 0 0 5t
m® | | valy) A .o ul=0 @
q q!béq) q!A((;(I)) Q!Ac(ﬁ) |A(Q) q
S adBbO -3 N eBAYBlw=0 (9)
c<q c<q j<c
> B.B!((Xz})® — (XX")®) =0. (10)
c<gq

Up to this point, our results hold for arbitrary training data To proceed, we require a
mild condition on our training set.

Definition 4. X is calledgeneridf X1, ..., X! are linearly independent for any distinct
multi-indices{;}.

Lemma 4. For generic X, the solution to Equation 7 (or equivalently, Equation 10) is
determined by the conditions
VI | §q,(XI)tv:;1:(I), (11)

wherev € V.

Proof. By definition, V<, = spaf{ X’ : |I| < ¢} and, by genericity, the vectors’ where
qg+d
d
of linear equations with unique solution, which we will callWe now show that satisfies

(10).

|I| < ¢ < bare linearly independent. Thus (11) reduces oqaz d system

(XxNHoe =Y XX and  (Xaf)® = > X (xf)"
[T|=c |T|=c
Yoo xI(xhtv = > CrX'af.
[I|=c [I|=c
and thug X X*)®¢y = (X zf)®c. |

Theorem 2. For generic data, letv be the solution to Equation 10. For any € R,
f(xo) = y*v = h(xg), whereh(z) = >111<q arx! is a multivariate polynomial of degree
g minimizing||y — h(X)||.

Proof. Sinceh(X) is the minimizer of |y — h(X)]],

hMX)=(By -+ Bg)(Bo -+ By)'y.



Thus,

sincev € V,.
By Lemma 5,
h(X)'v = Z ar(X1)tv = Z arxd = h(xo).
|I1<q [T]<q
O

We see that a8 — oo, the RLS solution tends to the minimum empirical erktin order
polynomial.

6 Experimental Verification

In this section, we present a simple experiment that illustrates our results. We consider the
fifth-degree polynomial function

f(x) = .5(1 —z)+ 150x(x — .25)(x — .3)(x — .75)(x — .95),

over therange € [0, 1]. Figure 2 plotsf, along with a 150 point dataset drawn by choosing

x; uniformly in [0, 1], and choosing = f(x) + ¢;, wheree; is a Gaussian random variable
with mean 0 and standard deviation .05. Figure 2 also shows (in red) the best polynomial
approximations to the data (not to the idgdl of various orders. (We omit third order
because it is nearly indistinguishable from second order.)

f(x), Random Sample of f(x), and Polynomial Approximations

0.0
1

— f

—— Oth order

--- 1storder
2nd order

--- 4th order

——- 5th order

-0.2
1

0.0 0.2 0.4 0.6 0.8 1.0

Fig.2. f(z) = .5(1 —x) + 150z (z — .25)(z — .3)(z — .75)(z — .95), a random dataset drawn from
f(x) with added Gaussian noise, and data-based polynomial approximatifns to

According to Corollary 1, if we parametrize our system by a variabknd solve a Gaus-
sian regularized least squares problem with= s and\ = C's~(2**1 for some integer



k, then, ass — oo, we expect the solution to the system to tend to Atteorder data-
based polynomial approximation i Asymptotically, the value of the consta@t does
not matter, so we (arbitrarily) set it to be 1. Figure 3 demonstrates this result.

We note that these experiments frequently require seftinguch smaller than machine-

e. As a consequence, we need more precision than IEEE double-precision floating-point,
and our results cannot be obtained via many standard tools (e.g., MATLAB(TM)) We per-

formed our experiments using CLISP, an implementation of Common Lisp that includes

arithmetic operations on arbitrary-precision floating point numbers.

0th order solution, and successive approximations 1st order solution, and successive approximations.
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Fig.3.As s — 00, 02 = s? andX = s~ ®**1  the solution to Gaussian RLS approachestthe
order polynomial solution.



7 Discussion

Our result provides insight into the asymptotic behavior of RLS, and (partially) explains
Figure 1: in conjunction with additional experiments not reported here, we believe that
we are recovering second-order polynomial behavior, with the drop-off in performance at
various\’s occurring at the transition to third-order behavior, which cannot be accurately
recovered in IEEE double-precision floating-point. Although we used the specific details
of RLS in deriving our solution, we expect that in practice, a similar result would hold for
Support Vector Machines, and perhaps for Tikhonov regularization with convex loss more
generally.

An interesting implication of our theorem is that for very lakgewe can obtain various
order polynomial classifications by sweepihgn [5], we present an algorithm for solving
for a wide range oA for essentially the same cost as using a singl€his algorithm is not
currently practical for large, due to the need for extended-precision floating point.

Our work also has implications for approximations to the Gaussian kernel. Yang et al. use
the Fast Gauss Transform (FGT) to speed up matrix-vector multiplications when perform-
ing RLS [7]. In [5], we studied this work; we found that while Yang et al. used moderate-to-
small values ob (and did not tune\), the FGT sacrificed substantial accuracy compared

to the best achievable results on their datasets. We showed empirically that the FGT be-
comes much more accurate at larger values;diowever, at larger, it seems likely we

are merely recovering low-order polynomial behavior. We suggest that approximations to
the Gaussian kernel must be checked carefully, to show that they produce sufficiently good
results are moderate valuesagfthis is a topic for future work.
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